
An Introduction 

MATERIALS SCIENCE and ENGINEERING

William D. Callister, Jr.

David G. Rethwisch

9E





Characteristics of Selected Elements

Atomic Density of Crystal Atomic Ionic Most Melting

Atomic Weight Solid, 20�C Structure, Radius Radius Common Point

Element Symbol Number (amu) (g/cm3) 20�C (nm) (nm) Valence (�C)

Aluminum Al 13 26.98 2.71 FCC 0.143 0.053 3� 660.4
Argon Ar 18 39.95 — — — — Inert �189.2
Barium Ba 56 137.33 3.5 BCC 0.217 0.136 2� 725
Beryllium Be 4 9.012 1.85 HCP 0.114 0.035 2� 1278
Boron B 5 10.81 2.34 Rhomb. — 0.023 3� 2300
Bromine Br 35 79.90 — — — 0.196 1� �7.2
Cadmium Cd 48 112.41 8.65 HCP 0.149 0.095 2� 321
Calcium Ca 20 40.08 1.55 FCC 0.197 0.100 2� 839
Carbon C 6 12.011 2.25 Hex. 0.071 �0.016 4� (sublimes at 3367)
Cesium Cs 55 132.91 1.87 BCC 0.265 0.170 1� 28.4
Chlorine Cl 17 35.45 — — — 0.181 1� �101
Chromium Cr 24 52.00 7.19 BCC 0.125 0.063 3� 1875
Cobalt Co 27 58.93 8.9 HCP 0.125 0.072 2� 1495
Copper Cu 29 63.55 8.94 FCC 0.128 0.096 1� 1085
Fluorine F 9 19.00 — — — 0.133 1� �220
Gallium Ga 31 69.72 5.90 Ortho. 0.122 0.062 3� 29.8
Germanium Ge 32 72.64 5.32 Dia. cubic 0.122 0.053 4� 937
Gold Au 79 196.97 19.32 FCC 0.144 0.137 1� 1064
Helium He 2 4.003 — — — — Inert �272 (at 26 atm)
Hydrogen H 1 1.008 — — — 0.154 1� �259
Iodine I 53 126.91 4.93 Ortho. 0.136 0.220 1� 114
Iron Fe 26 55.85 7.87 BCC 0.124 0.077 2� 1538
Lead Pb 82 207.2 11.35 FCC 0.175 0.120 2� 327
Lithium Li 3 6.94 0.534 BCC 0.152 0.068 1� 181
Magnesium Mg 12 24.31 1.74 HCP 0.160 0.072 2� 649
Manganese Mn 25 54.94 7.44 Cubic 0.112 0.067 2� 1244
Mercury Hg 80 200.59 — — — 0.110 2� �38.8
Molybdenum Mo 42 95.94 10.22 BCC 0.136 0.070 4� 2617
Neon Ne 10 20.18 — — — — Inert �248.7
Nickel Ni 28 58.69 8.90 FCC 0.125 0.069 2� 1455
Niobium Nb 41 92.91 8.57 BCC 0.143 0.069 5� 2468
Nitrogen N 7 14.007 — — — 0.01–0.02 5� �209.9
Oxygen O 8 16.00 — — — 0.140 2� �218.4
Phosphorus P 15 30.97 1.82 Ortho. 0.109 0.035 5� 44.1
Platinum Pt 78 195.08 21.45 FCC 0.139 0.080 2� 1772
Potassium K 19 39.10 0.862 BCC 0.231 0.138 1� 63
Silicon Si 14 28.09 2.33 Dia. cubic 0.118 0.040 4� 1410
Silver Ag 47 107.87 10.49 FCC 0.144 0.126 1� 962
Sodium Na 11 22.99 0.971 BCC 0.186 0.102 1� 98
Sulfur S 16 32.06 2.07 Ortho. 0.106 0.184 2� 113
Tin Sn 50 118.71 7.27 Tetra. 0.151 0.071 4� 232
Titanium Ti 22 47.87 4.51 HCP 0.145 0.068 4� 1668
Tungsten W 74 183.84 19.3 BCC 0.137 0.070 4� 3410
Vanadium V 23 50.94 6.1 BCC 0.132 0.059 5� 1890
Zinc Zn 30 65.41 7.13 HCP 0.133 0.074 2� 420
Zirconium Zr 40 91.22 6.51 HCP 0.159 0.079 4� 1852 



Values of Selected Physical Constants

Quantity Symbol SI Units cgs Units

Avogadro’s number NA 6.022 � 1023 6.022 � 1023

molecules/mol molecules/mol
Boltzmann’s constant k 1.38 � 10�23 J/atom K 1.38 � 10�16 erg/atom K

8.62 � 10�5 eV/atom K
Bohr magneton mB 9.27 � 10�24 A m2 9.27 � 10�21 erg/gaussa

Electron charge e 1.602 � 10�19 C 4.8 � 10�10 statcoulb

Electron mass — 9.11 � 10�31 kg 9.11 � 10�28 g
Gas constant R 8.31 J/mol K 1.987 cal/mol K
Permeability of a vacuum m0 1.257 � 10�6 henry/m unitya

Permittivity of a vacuum �0 8.85 � 10�12 farad/m unityb

Planck’s constant h 6.63 � 10�34 J s 6.63 � 10�27 erg s
4.13 � 10�15 eV s

Velocity of light in a vacuum c 3 � 108 m/s 3 � 1010 cm/s
a In cgs-emu units.
b In cgs-esu units.

#
##

##

#
#
##

Unit Abbreviations

A � ampere in. � inch N � newton
� angstrom J � joule nm � nanometer

Btu � British thermal unit K � degrees Kelvin P � poise
C � Coulomb kg � kilogram Pa � Pascal

�C � degrees Celsius lbf � pound force s � second
cal � calorie (gram) lbm � pound mass T � temperature
cm � centimeter m � meter �m � micrometer
eV � electron volt Mg � megagram (micron)
�F � degrees Fahrenheit mm � millimeter W � watt
ft � foot mol � mole psi � pounds per square
g � gram MPa � megapascal inch

Å

SI Multiple and Submultiple Prefixes

Factor by Which
Multiplied Prefix Symbol

109 giga G
106 mega M
103 kilo k
10�2 centia c
10�3 milli m
10�6 micro �

10�9 nano n
10�12 pico p

a Avoided when possible.
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In this ninth edition we have retained the objectives and approaches for teaching 
materials science and engineering that were presented in previous editions. The first, 

and primary, objective is to present the basic fundamentals on a level appropriate for 
university/college students who have completed their freshmen calculus, chemistry, and 
physics courses.

The second objective is to present the subject matter in a logical order, from the 
simple to the more complex. Each chapter builds on the content of previous ones.

The third objective, or philosophy, that we strive to maintain throughout the text is 
that if a topic or concept is worth treating, then it is worth treating in sufficient detail and 
to the extent that students have the opportunity to fully understand it without having to 
consult other sources; in addition, in most cases, some practical relevance is provided.

The fourth objective is to include features in the book that will expedite the learning 
process. These learning aids include the following:

 • Numerous illustrations, now presented in full color, and photographs to help 
visualize what is being presented

 • Learning objectives, to focus student attention on what they should be getting from 
each chapter

 • “Why Study . . .” and “Materials of Importance” items as well as case studies that 
provide relevance to topic discussions

 • “Concept Check” questions that test whether a student understands the subject 
matter on a conceptual level

 • Key terms, and descriptions of key equations, highlighted in the margins for quick 
reference

 • End-of-chapter questions and problems designed to progressively develop 
students’ understanding of concepts and facility with skills

 • Answers to selected problems, so students can check their work

 • A glossary, a global list of symbols, and references to facilitate understanding of the 
subject matter

 • End-of-chapter summary tables of important equations and symbols used in these 
equations

 • Processing/Structure/Properties/Performance correlations and summary concept 
maps for four materials (steels, glass-ceramics, polymer fibers, and silicon 
semiconductors), which integrate important concepts from chapter to chapter

 • Materials of Importance sections that lend relevance to topical coverage by 
discussing familiar and interesting materials and their applications

The fifth objective is to enhance the teaching and learning process by using the newer tech-
nologies that are available to most instructors and today’s engineering students.

Preface

• vii
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New/Revised Content
Several important changes have been made with this Ninth Edition. One of the most signifi-
cant is the incorporation of several new sections, as well as revisions/amplifications of other 
sections. These include the following:

 • Numerous new and revised example problems. In addition, all homework problems 
requiring computations have been refreshed.

 • Revised, expanded, and updated tables

 • Two new case studies: “Liberty Ship Failures” (Chapter 1) and “Use of Composites 
in the Boeing 787 Dreamliner” (Chapter 16)

 • Bond hybridization in carbon (Chapter 2)

 • Revision of discussions on crystallographic planes and directions to include the use 
of equations for the determination of planar and directional indices (Chapter 3)

 • Revised discussion on determination of grain size (Chapter 4)

 • New section on the structure of carbon fibers (Chapter 13)

 • Revised/expanded discussions on structures, properties, and applications of the 
nanocarbons: fullerenes, carbon nanotubes, and graphene (Chapter 13)

 • Revised/expanded discussion on structural composites: laminar composites and 
sandwich panels (Chapter 16)

 • New section on structure, properties, and applications of nanocomposite materials 
(Chapter 16)

 • Tutorial videos. In WileyPLUS, Tutorial Videos help students with their “muddiest 
points” in conceptual understanding and problem-solving.

 • Exponents and logarithms. In WileyPLUS, the exponential functions and natural 
logarithms have been added to the Exponents and Logarithms section of the Math 
Skills Review.

 • Fundamentals of Engineering homework problems and questions for most 
chapters. These appear at the end of Questions and Problems sections and provide 
students the opportunity to practice answering and solving questions and problems 
similar to those found on Fundamentals of Engineering examinations.

Online Learning Resources—Student Companion Site 
at www.wiley.com/college/callister.
Also found on the book’s website is a Students’ Companion page on which is posted several 
important instructional elements for the student that complement the text; these include the 
following:

 • Answers to Concept Check questions, questions which are found in the print book.

 • Library of Case Studies. One way to demonstrate principles of design in an engineering 
curriculum is via case studies: analyses of problem-solving strategies applied to 
real-world examples of applications/devices/failures encountered by engineers. Five 
case studies are provided as follows: (1) Materials Selection for a Torsionally Stressed 
Cylindrical Shaft; (2) Automobile Valve Spring; (3) Failure of an Automobile Rear 
Axle; (4) Artificial Total Hip Replacement; and (5) Chemical Protective Clothing.

 • Mechanical Engineering (ME) Module. This module treats materials science/
engineering topics not covered in the printed text that are relevant to mechanical 
engineering.

 • Extended Learning Objectives. This is a more extensive list of learning objectives 
than is provided at the beginning of each chapter. These direct the student to study 
the subject material to a greater depth.
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 • Student Lecture PowerPoint® Slides. These slides (in both Adobe Acrobat® PDF 
and PowerPoint® formats) are virtually identical to the lecture slides provided to 
an instructor for use in the classroom. The student set has been designed to allow 
for note taking on printouts.

 • Index of Learning Styles. Upon answering a 44-item questionnaire, a user’s 
learning-style preference (i.e., the manner in which information is assimilated and 
processed) is assessed.

Online Resources for Instructors—Instructors Companion Site 
at www.wiley.com/college/callister.
The Instructor Companion Site is available for instructors who have adopted this text. 
Please visit the website to register for access. Resources that are available include the 
following:

 • All resources found on the Student Companion Site. (Except for the Student 
Lecture PowerPoint® Slides.)

 • Instructor Solutions Manual. Detailed solutions for all end-of-chapter questions 
and problems (in both Word® and Adobe Acrobat® PDF formats).

 • Homework Problem Correlation Guide—8th edition to 9th edition. This guide 
notes, for each homework problem or question (by number), whether it appeared 
in the eighth edition and, if so, its number in this previous edition.

 • Virtual Materials Science and Engineering (VMSE). This web-based software 
package consists of interactive simulations and animations that enhance the 
learning of key concepts in materials science and engineering. Included in VMSE 
are eight modules and a materials properties/cost database. Titles of these modules 
are as follows: (1) Metallic Crystal Structures and Crystallography; (2) Ceramic 
Crystal Structures; (3) Repeat Unit and Polymer Structures; (4) Dislocations; (5) 
Phase Diagrams; (6) Diffusion; (7) Tensile Tests; and (8) Solid-Solution 
Strengthening.

 • Image Gallery. Illustrations from the book. Instructors can use them in 
assignments, tests, or other exercises they create for students.

 • Art PowerPoint Slides. Book art loaded into PowerPoints, so instructors can more 
easily use them to create their own PowerPoint Slides.

 • Lecture Note PowerPoints. These slides, developed by the authors and Peter M. 
Anderson (The Ohio State University), follow the flow of topics in the text, and 
include materials taken from the text as well as other sources. Slides are available 
in both Adobe Acrobat® PDF and PowerPoint® formats. [Note: If an instructor 
doesn’t have available all fonts used by the developer, special characters may not 
be displayed correctly in the PowerPoint version (i.e., it is not possible to embed 
fonts in PowerPoints); however, in the PDF version, these characters will appear 
correctly.]

 • Solutions to Case Study Problems.

 • Solutions to Problems in the Mechanical Engineering Web Module.

 • Suggested Course Syllabi for the Various Engineering Disciplines. Instructors 
may consult these syllabi for guidance in course/lecture organization and 
planning.

 • Experiments and Classroom Demonstrations. Instructions and outlines for 
experiments and classroom demonstrations that portray phenomena and/or 
illustrate principles that are discussed in the book; references are also provided 
that give more detailed accounts of these demonstrations.
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WileyPLUS is a research-based online environment for effective teaching and learning.
WileyPLUS builds students’ confidence by taking the guesswork out of studying by 

providing them with a clear roadmap:  what is assigned, what is required for each assign-
ment, and whether assignments are done correctly. Independent research has shown that 
students using WileyPLUS will take more initiative so the instructor has a greater impact 
on their achievement in the classroom and beyond. WileyPLUS also helps students study 
and progress at a pace that’s right for them. Our integrated resources–available 24/7–
function like a personal tutor, directly addressing each student’s demonstrated needs by 
providing specific problem-solving techniques.

What do students receive with WileyPLUS?
 • The complete digital textbook that saves students up to 60% of the cost of the 

in-print text.

 • Navigation assistance, including links to relevant sections in the online textbook.

 • Immediate feedback on performance and progress, 24/7.

 • Integrated, multi-media resources—to include VMSE (Virtual Materials Science & 

Engineering), tutorial videos, a Math Skills Review, flashcards, and much more; 
these resources provide multiple study paths and encourage more active learning.

What do instructors receive with WileyPLUS?
 • The ability to effectively and efficiently personalize and manage their course.

 • The ability to track student performance and progress, and easily identify those 
who are falling behind.

 • Media-rich course materials and assessment resources including—a complete 
Solutions Manual, PowerPoint® Lecture Slides, Extended Learning Objectives, and 
much more. www.WileyPLUS.com

WileyPLUS

We have a sincere interest in meeting the needs of educators and students in the materi-
als science and engineering community, and therefore we solicit feedback on this edition. 
Comments, suggestions, and criticisms may be submitted to the authors via email at the 
following address: billcallister@comcast.net.
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C h a p t e r 1  Introduction

A familiar item fabricated from three different material types is the 

beverage container. Beverages are marketed in aluminum (metal) cans 

(top), glass (ceramic) bottles (center), and plastic (polymer) bottles 

(bottom).
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Learning Objectives
After studying this chapter, you should be able to do the following:

1.  List six different property classifications of mate-
rials that determine their applicability.

2.  Cite the four components that are involved in 
the design, production, and utilization of materi-
als, and briefly describe the interrelationships 
between these components.

3.  Cite three criteria that are important in the ma-
terials selection process.

4. (a)  List the three primary classifications 
of solid materials, and then cite the 
distinctive chemical feature of each.

(b)  Note the four types of advanced materials 
and, for each, its distinctive feature(s).

5. (a) Briefly define smart material/system.
(b)  Briefly explain the concept of nanotechnol-

ogy as it applies to materials.

Materials are probably more deep seated in our culture than most of us realize. 
Transportation, housing, clothing, communication, recreation, and food production—
virtually every segment of our everyday lives is influenced to one degree or another 
by materials. Historically, the development and advancement of societies have been 
intimately tied to the members’ ability to produce and manipulate materials to fill their 
needs. In fact, early civilizations have been designated by the level of their materials 
development (Stone Age, Bronze Age, Iron Age).1

The earliest humans had access to only a very limited number of materials, those that 
occur naturally: stone, wood, clay, skins, and so on. With time, they discovered techniques 
for producing materials that had properties superior to those of the natural ones; these 
new materials included pottery and various metals. Furthermore, it was discovered that the 
properties of a material could be altered by heat treatments and by the addition of other 
substances. At this point, materials utilization was totally a selection process that involved 
deciding from a given, rather limited set of materials, the one best suited for an application 
by virtue of its characteristics. It was not until relatively recent times that scientists came to 
understand the relationships between the structural elements of materials and their proper-
ties. This knowledge, acquired over approximately the past 100 years, has empowered them 
to fashion, to a large degree, the characteristics of materials. Thus, tens of thousands of dif-
ferent materials have evolved with rather specialized characteristics that meet the needs of 
our modern and complex society, including metals, plastics, glasses, and fibers.

The development of many technologies that make our existence so comfortable 
has been intimately associated with the accessibility of suitable materials. An advance-
ment in the understanding of a material type is often the forerunner to the stepwise 
progression of a technology. For example, automobiles would not have been possible 
without the availability of inexpensive steel or some other comparable substitute. In the 
contemporary era, sophisticated electronic devices rely on components that are made 
from what are called semiconducting materials.

1.1 HISTORICAL PERSPECTIVE

1The approximate dates for the beginnings of the Stone, Bronze, and Iron ages are 2.5 million bc, 3500 bc, and 
1000 bc, respectively.

Sometimes it is useful to subdivide the discipline of materials science and engineering 
into materials science and materials engineering subdisciplines. Strictly speaking, materi-
als science involves investigating the relationships that exist between the structures and 
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properties of materials. In contrast, materials engineering involves, on the basis of these 
structure–property correlations, designing or engineering the structure of a material to 
produce a predetermined set of properties.2 From a functional perspective, the role of a 
materials scientist is to develop or synthesize new materials, whereas a materials engi-
neer is called upon to create new products or systems using existing materials and/or to 
develop techniques for processing materials. Most graduates in materials programs are 
trained to be both materials scientists and materials engineers.

Structure is, at this point, a nebulous term that deserves some explanation. In brief, 
the structure of a material usually relates to the arrangement of its internal components. 
Subatomic structure involves electrons within the individual atoms and interactions with 
their nuclei. On an atomic level, structure encompasses the organization of atoms or 
molecules relative to one another. The next larger structural realm, which contains large 
groups of atoms that are normally agglomerated together, is termed microscopic, mean-
ing that which is subject to direct observation using some type of microscope. Finally, 
structural elements that can be viewed with the naked eye are termed macroscopic.

The notion of property deserves elaboration. While in service use, all materials are 
exposed to external stimuli that evoke some type of response. For example, a specimen 
subjected to forces experiences deformation, or a polished metal surface reflects light. A 
property is a material trait in terms of the kind and magnitude of response to a specific 
imposed stimulus. Generally, definitions of properties are made independent of mate-
rial shape and size.

Virtually all important properties of solid materials may be grouped into six differ-
ent categories: mechanical, electrical, thermal, magnetic, optical, and deteriorative. For 
each, there is a characteristic type of stimulus capable of provoking different responses. 
Mechanical properties relate deformation to an applied load or force; examples include 
elastic modulus (stiffness), strength, and toughness. For electrical properties, such as 
electrical conductivity and dielectric constant, the stimulus is an electric field. The 
thermal behavior of solids can be represented in terms of heat capacity and thermal 
conductivity. Magnetic properties demonstrate the response of a material to the ap-
plication of a magnetic field. For optical properties, the stimulus is electromagnetic or 
light radiation; index of refraction and reflectivity are representative optical properties. 
Finally, deteriorative characteristics relate to the chemical reactivity of materials. The 
chapters that follow discuss properties that fall within each of these six classifications.

In addition to structure and properties, two other important components are in-
volved in the science and engineering of materials—namely, processing and perform-

ance. With regard to the relationships of these four components, the structure of a 
material depends on how it is processed. Furthermore, a material’s performance is a 
function of its properties. Thus, the interrelationship among processing, structure, prop-
erties, and performance is as depicted in the schematic illustration shown in Figure 1.1. 
Throughout this text, we draw attention to the relationships among these four compo-
nents in terms of the design, production, and utilization of materials.

We present an example of these processing-structure-properties-performance prin-
ciples in Figure 1.2, a photograph showing three thin disk specimens placed over some 
printed matter. It is obvious that the optical properties (i.e., the light transmittance) of each 
of the three materials are different; the one on the left is transparent (i.e., virtually all of the 

2Throughout this text, we draw attention to the relationships between material properties and structural elements.

Figure 1.1 The four components of the discipline of materials science and 
engineering and their interrelationship.

Processing Structure Properties Performance
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reflected light passes through it), whereas the disks in the center and on the right are, respec-
tively, translucent and opaque. All of these specimens are of the same material, aluminum 
oxide, but the leftmost one is what we call a single crystal—that is, has a high degree of 
perfection—which gives rise to its transparency. The center one is composed of numerous 
and very small single crystals that are all connected; the boundaries between these small 
crystals scatter a portion of the light reflected from the printed page, which makes this ma-
terial optically translucent. Finally, the specimen on the right is composed not only of many 
small, interconnected crystals, but also of a large number of very small pores or void spaces. 
These pores also effectively scatter the reflected light and render this material opaque.

Thus, the structures of these three specimens are different in terms of crystal 
boundaries and pores, which affect the optical transmittance properties. Furthermore, 
each material was produced using a different processing technique. If optical transmit-
tance is an important parameter relative to the ultimate in-service application, the per-
formance of each material will be different.

Why do we study materials? Many an applied scientist or engineer, whether mechani-
cal, civil, chemical, or electrical, is at one time or another exposed to a design problem 
involving materials, such as a transmission gear, the superstructure for a building, an 
oil refinery component, or an integrated circuit chip. Of course, materials scientists 
and engineers are specialists who are totally involved in the investigation and design 
of materials.

Many times, a materials problem is one of selecting the right material from the 
thousands available. The final decision is normally based on several criteria. First, the 
in-service conditions must be characterized, for these dictate the properties required of 
the material. On only rare occasions does a material possess the maximum or ideal com-
bination of properties. Thus, it may be necessary to trade one characteristic for another. 
The classic example involves strength and ductility; normally, a material having a high 
strength has only a limited ductility. In such cases, a reasonable compromise between 
two or more properties may be necessary.

A second selection consideration is any deterioration of material properties that 
may occur during service operation. For example, significant reductions in mechanical 
strength may result from exposure to elevated temperatures or corrosive environments.

1.3  WHY STUDY MATERIALS SCIENCE 
AND ENGINEERING?

Figure 1.2 Three thin disk specimens of 
aluminum oxide that have been placed over a 
printed page in order to demonstrate their 
differences in light-transmittance characteristics. 
The disk on the left is transparent (i.e., virtually 
all light that is reflected from the page passes 
through it), whereas the one in the center is 
translucent (meaning that some of this reflected 
light is transmitted through the disk). The disk 
on the right is opaque—that is, none of the light 
passes through it. These differences in optical 
properties are a consequence of differences in 
structure of these materials, which have resulted 
from the way the materials were processed.
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Finally, probably the overriding consideration is that of economics: What will the 
finished product cost? A material may be found that has the ideal set of properties but is 
prohibitively expensive. Here again, some compromise is inevitable. The cost of a finished 
piece also includes any expense incurred during fabrication to produce the desired shape.

The more familiar an engineer or scientist is with the various characteristics and 
structure–property relationships, as well as the processing techniques of materials, the 
more proficient and confident he or she will be in making judicious materials choices 
based on these criteria.

Liberty Ship Failures

C A S E  S T U D Y

The following case study illustrates one role that 
materials scientists and engineers are called 

upon to assume in the area of materials performance: 
analyze mechanical failures, determine their causes, 
and then propose appropriate measures to guard 
against future incidents.

The failure of many of the World War II Liberty 
ships3 is a well-known and dramatic example of the 
brittle fracture of steel that was thought to be duc-
tile.4 Some of the early ships experienced structural 
damage when cracks developed in their decks and 
hulls. Three of them catastrophically split in half when 
cracks formed, grew to critical lengths, and then rap-
idly propagated completely around the ships’ girths. 
Figure 1.3 shows one of the ships that fractured the 
day after it was launched.

Subsequent investigations concluded one or more 
of the following factors contributed to each failure5:

•  When some normally ductile metal alloys are 
cooled to relatively low temperatures, they be-
come susceptible to brittle fracture—that is, they 
experience a ductile-to-brittle transition upon 
cooling through a critical range of temperatures. 
These Liberty ships were constructed of steel that 

experienced a ductile-to-brittle transition. Some 
of them were deployed to the frigid North Atlan-
tic, where the once ductile metal experienced brit-
tle fracture when temperatures dropped to below 
the transition temperature.6

•  The corner of each hatch (i.e., door) was square; 
these corners acted as points of stress concentra-
tion where cracks can form.

•  German U-boats were sinking cargo ships faster 
than they could be replaced using existing con-
struction techniques. Consequently, it became 
necessary to revolutionize construction methods 
to build cargo ships faster and in greater numbers. 
This was accomplished using prefabricated steel 
sheets that were assembled by welding rather 
than by the traditional time-consuming riveting. 
Unfortunately, cracks in welded structures may 
propagate unimpeded for large distances, which 
can lead to catastrophic failure. However, when 
structures are riveted, a crack ceases to propagate 
once it reaches the edge of a steel sheet.

•  Weld defects and discontinuities (i.e., sites where 
cracks can form) were introduced by inexperi-
enced operators.

3During World War II, 2,710 Liberty cargo ships were mass-produced by the United States to supply food and 
materials to the combatants in Europe.
4Ductile metals fail after relatively large degrees of permanent deformation; however, very little if any permanent 
deformation accompanies the fracture of brittle materials. Brittle fractures can occur very suddenly as cracks spread 
rapidly; crack propagation is normally much slower in ductile materials, and the eventual fracture takes longer. 
For these reasons, the ductile mode of fracture is usually preferred. Ductile and brittle fractures are discussed in 
Sections 8.3 and 8.4.
5Sections 8.2 through 8.6 discuss various aspects of failure.
6This ductile-to-brittle transition phenomenon, as well as techniques that are used to measure and raise the critical 
temperature range, are discussed in Section 8.6.

(continued)
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Remedial measures taken to correct these prob-
lems included the following:

•  Lowering the ductile-to-brittle temperature of 
the steel to an acceptable level by improving steel 
quality (e.g., reducing sulfur and phosphorus im-
purity contents).

•  Rounding off hatch corners by welding a curved 
reinforcement strip on each corner.7

•  Installing crack-arresting devices such as riveted 
straps and strong weld seams to stop propagating 
cracks.

•  Improving welding practices and establishing weld-
ing codes.

In spite of these failures, the Liberty ship program 
was considered a success for several reasons, the pri-
mary reason being that ships that survived failure were 
able to supply Allied Forces in the theater of operations 
and in all likelihood shortened the war. In addition, 
structural steels were developed with vastly improved 
resistances to catastrophic brittle fractures. Detailed 
analyses of these failures advanced the understand-
ing of crack formation and growth, which ultimately 
evolved into the discipline of fracture mechanics.

Figure 1.3 The Liberty ship S.S. Schenectady, which, in 1943, failed 
before leaving the shipyard.
(Reprinted with permission of Earl R. Parker, Brittle Behavior of Engineering 

Structures, National Academy of Sciences, National Research Council, John 
Wiley & Sons, New York, 1957.)

7The reader may note that corners of windows and doors for all of today’s marine and aircraft structures are 
rounded.

Solid materials have been conveniently grouped into three basic categories: metals, ce-
ramics, and polymers, a scheme based primarily on chemical makeup and atomic struc-
ture. Most materials fall into one distinct grouping or another. In addition, there are the 
composites that are engineered combinations of two or more different materials. A brief 
explanation of these material classifications and representative characteristics is offered 
next. Another category is advanced materials—those used in high-technology applica-
tions, such as semiconductors, biomaterials, smart materials, and nanoengineered mate-
rials; these are discussed in Section 1.5.

1.4 CLASSIFICATION OF MATERIALS

Tutorial Video:
What are the 

Different Classes 
of Materials?
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Metals
Metals are composed of one or more metallic elements (e.g., iron, aluminum, copper, 
titanium, gold, nickel), and often also nonmetallic elements (e.g., carbon, nitrogen, 
oxygen) in relatively small amounts.8 Atoms in metals and their alloys are arranged in a 
very orderly manner (as discussed in Chapter 3) and are relatively dense in comparison 
to the ceramics and polymers (Figure 1.4). With regard to mechanical characteristics, 
these materials are relatively stiff (Figure 1.5) and strong (Figure 1.6), yet are ductile 
(i.e., capable of large amounts of deformation without fracture), and are resistant to 
fracture (Figure 1.7), which accounts for their widespread use in structural applications. 
Metallic materials have large numbers of nonlocalized electrons—that is, these electrons 
are not bound to particular atoms. Many properties of metals are directly attributable 
to these electrons. For example, metals are extremely good conductors of electricity 

8The term metal alloy refers to a metallic substance that is composed of two or more elements.
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Engineering Materials 

1: An Introduction to 

Properties, Applications 

and Design, third 
edition, M. F. Ashby and 

D. R. H. Jones, pages 
177 and 178, Copyright 

2005, with permission 
from Elsevier.)

(Figure 1.8) and heat, and are not transparent to visible light; a polished metal surface 
has a lustrous appearance. In addition, some of the metals (i.e., Fe, Co, and Ni) have 
desirable magnetic properties.

Figure 1.9 shows several common and familiar objects that are made of metallic materials. 
Furthermore, the types and applications of metals and their alloys are discussed in Chapter 11.

Ceramics
Ceramics are compounds between metallic and nonmetallic elements; they are most fre-
quently oxides, nitrides, and carbides. For example, common ceramic materials include 
aluminum oxide (or alumina, Al2O3), silicon dioxide (or silica, SiO2), silicon carbide (SiC), 
silicon nitride (Si3N4), and, in addition, what some refer to as the traditional ceramics—those 
composed of clay minerals (e.g., porcelain), as well as cement and glass. With regard to me-
chanical behavior, ceramic materials are relatively stiff and strong—stiffnesses and strengths 
are comparable to those of the metals (Figures 1.5 and 1.6). In addition, they are typically 
very hard. Historically, ceramics have exhibited extreme brittleness (lack of ductility) and are 
highly susceptible to fracture (Figure 1.7). However, newer ceramics are being engineered 
to have improved resistance to fracture; these materials are used for cookware, cutlery, and 

Tutorial Video:
Ceramics
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Figure 1.9 Familiar objects made of 
metals and metal alloys (from left to right): 
silverware (fork and knife), scissors, coins, a 
gear, a wedding ring, and a nut and bolt.

even automobile engine parts. Furthermore, ceramic materials are typically insulative to the 
passage of heat and electricity (i.e., have low electrical conductivities, Figure 1.8) and are 
more resistant to high temperatures and harsh environments than are metals and polymers. 
With regard to optical characteristics, ceramics may be transparent, translucent, or opaque 
(Figure 1.2), and some of the oxide ceramics (e.g., Fe3O4) exhibit magnetic behavior.

Several common ceramic objects are shown in Figure 1.10. The characteristics, 
types, and applications of this class of materials are also discussed in Chapters 12 and 13.

Polymers
Polymers include the familiar plastic and rubber materials. Many of them are organic 
compounds that are chemically based on carbon, hydrogen, and other nonmetallic ele-
ments (i.e., O, N, and Si). Furthermore, they have very large molecular structures, often 
chainlike in nature, that often have a backbone of carbon atoms. Some common and 
familiar polymers are polyethylene (PE), nylon, poly(vinyl chloride) (PVC), polycar-
bonate (PC), polystyrene (PS), and silicone rubber. These materials typically have low 
densities (Figure 1.4), whereas their mechanical characteristics are generally dissimilar 
to those of the metallic and ceramic materials—they are not as stiff or strong as these 
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